
Frequently, researchers wish to make some 
statement about how reliable a particular 
piece of research is in guiding business 
decisions. To do this, we often rely on the error 
that is attributable to sampling. Since we are 
not interviewing all potential respondents, 
there is some chance that our results (from 
a sample) would not match those obtained 
had we interviewed all potential 
respondents (the universe).

The calculation of this sampling error is very 
easy for questions dealing with proportions 
of respondents.1 The sampling tolerance 
(error associated to sampling) is calculated 
using the common formula of:

In this formula, t corresponds to the t-statistic, 
which is determined by the confidence level 
at which you will test the significance of the 
di�erence. Typically, significance testing is 
conducted at the 95% confidence level. The 
corresponding t-statistic is 1.96. The value p 
represents the proportion of respondents 
who give a particular response and q 
represents the proportion of respondents 
who don’t give that response (q can also 
be expressed as 1 - p). Finally, n represents 
the sample size.
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1The calculation of sampling error around a mean of 
numeric responses can be done as well. To calculate the 
sampling tolerance for a mean, the term sqrt(pq/n) is 
replaced with the standard error of the mean and is 
multiplied by the t-value as shown above.

± t × pq
n

± 1.96 × 0.6 × 0.4
300

± 1.96 × 0.24
300

± 1.96 × 0.02828

± 0.055

± 5.5%

± 1.96 × 0.0008

Let’s consider a simple example of 300 
respondents. Assume 60% of the respondents 
say, “yes” to a particular question. Let’s 
determine the sampling error for tests of 
significance at 95% confidence. Here n = 300, 
p = 0.6, q = 0.4 (q = 1 – p or q = 1 - 0.6 = 0.4), 
and t = 1.96. Therefore, it follows that the 
sampling tolerance (at 95% confidence) is:

The confidence interval (or sampling tolerance 
or sampling error) on this proportion is 5.5%. 
The interpretation of this number is as follows:

If we were to complete this study 100 times using 
the same techniques and methods, in 95 of the 
100 cases the true universe proportion would be 
within 5.5 percentage points of the proportion 
that we determine from the sample.
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± t × pq
n

We say “95 out of 100 times” because of the 
confidence level that we selected;2 here we 
used 95%. We could have used 90%, or 99%, 
or even 99.9%. It does not mean that we are 
95% confident that the true universe proportion 
is within 5.5 percentage points of the 
sample proportion.

The t-statistics for various confidence levels 
are shown below.

The 95% confidence level is commonly used, 
and many researchers round the t-statistic to 
2.0 for simplicity.

Recall the formula presented above for 
the sampling error:

Note that the sampling error is based on 
three measures:
• The confidence level (the t-statistic)
• The variability of respondents’ answers 
 (the p term)
• The sample size (n)

The variability of respondents’ answers refers 
to how much respondents agree on their 
responses, that is, how high or low the p 
term is. For example, consider just the pq 
term from the previous formula for 
various values of p.

Confidence Level T-Sta�s�c
80% 1.282
90% 1.645
95% 1.960
99% 2.576

p q pq
.1 .9 .09
.2 .8 .16
.3 .7 .21
.4 .6 .24
.5 .5 .25
.6 .4 .24
.7 .3 .21
.8 .2 .16
.9 .1 .09

We can see that the largest pq term occurs 
when the proportion (p) is exactly half (0.5) 
and changes only a little between 0.3 and 0.7.

We can use this information to form a 
worst-case scenario for any sample size and 
level of confidence; that is, when half of the 
respondents say “yes” to a question and half 
say “no.” The following table shows sampling 
errors for a number of such worst-case 
scenarios, when p = 0.5: p.

2When testing at the 95% confidence level, there is a 5% chance that we will find a significant di�erence that doesn’t 
truly exist. This chance, or the alpha level (α) is the complement of the confidence level, and is also referred to as 
the probability of making a Type I error. Not finding a significant di�erence that truly does exist is referred to as a 
Type II error, and its probability s expressed as the beta level (β), which is the complement 
of the power of the significance test.

Sampling Error of a Propor�on
Confidence level

n 90% 95%
60 10.6% 12.7%
80 9.2% 11.0%

100 8.2% 9.8%
150 6.7% 8.0%
200 5.8% 6.9%
250 5.2% 6.2%
300 4.7% 5.7%
400 4.1% 4.9%
500 3.7% 4.4%
600 3.4% 4.0%
700 3.1% 3.7%
800 2.9% 3.5%
900 2.7% 3.3%

1000 2.6% 3.1%
2000 1.8% 2.2%
2500 1.6% 2.0%
5000 1.2% 1.4%
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Note that the confidence interval (or 
sampling error) decreases at a much slower 
rate than the sample size increases. Recall 
that the formula includes the square root of 
the sample size, so a doubling of the sample 
size will decrease the sampling tolerance by 
a factor of the square root of 2. Because of 
this square root relationship, a sample size 
must be quadrupled to reduce the sampling 
error by half.

Put another way, doubling the sample size 
decreases the sampling tolerance to 70% of 
the previous tolerance ( = 1/1.41 = 0.707).

Assumptions Behind These Calculations

While these calculations are relatively 
straightforward, there are a number of 
important assumptions to remember when 
applying this formula to our work. These are 
outlined below.

Reasonably Large Sample Sizes

This formula should only be applied to 
samples with a minimum base of 60, and 
bases over 100 are better. Do not use this 
formula with small samples sizes.

Proportion (p) not near 0 or 1

This formula works well when the p term is 
roughly between 0.15 and 0.85. When p is 
very near zero or very near one, di�erent 
formulae are more appropriate. 

Perfect Random Sampling

The usage of this formula also depends on 
the sampling design. First, the formula 
assumes a simple random sample. If the 
sample used had quotas or weighting, this 
formula will understate the confidence 
interval3 — at times by a factor of 2 or more. 
Second, this formula assumes a 100% 
response rate. While this second part of the 
assumption is generally ignored, it is important 
to keep in mind in cases when the refusals 
are particularly high or when the refusals are 
less likely to be random. 

3This inflation of the variance is often referred to as the 
design e�ect, or sometimes just de�.

4Such adjustments fall under the heading of “finite 
population correction” factors.

5It is important to note that a two-sample test is 
di�erent than a two-tail test. We won’t discuss a two-tail 
versus one-tail test here, but just know that they 
are not the same thing.

Large Universe

This formula assumes that the universe is 
su�ciently large, and that the sampling 
fraction (the sample size divided by the 
universe size) is small, typically under 8%. 
As the sampling fraction gets larger, the 
risk attributed to sampling is decreased, 
expressed as a smaller confidence interval.4

One Sample, Two Sample

So far we have been talking about the sampling 
errors associated with the di�erence between 
our sample results and the true (but unknown) 
proportion in the universe. This di�erence is 
very useful in fields of political polling or 
sampling to determine an incidence, as the 
government frequently reports. In marketing 
research, we sometimes care about the 
incidence of brand users or the proportion
of people likely to purchase a specific new 
product. More often we use significance testing 
to identify if two groups are significantly 
di�erent from each other.

The test used to determine if two sample 
segments are statistically di�erent is referred 
to as a two-sample test.5 The formula shown 
above is a one-sample test. The two-sample 
test is similar to a one-sample test but takes 
into consideration that both sample 
segments have sampling error.

The formula for this test is shown below.

± t × p1q1
n1

p2q2
n2

+
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Here, p, q, and n each have the same meanings 
they did above, but there is now a value for 
each of the two sample segments under 
consideration, denoted by subscripts.

Let’s consider the following example. In a 
sample of lottery players we find that 60% of 
males are frequent players and 52% of females 
are frequent players. Can we say that men 
are significantly more likely to be frequent 
players than females? Our sample included 
300 men and 250 women. Let’s test at the 
95% confidence interval. The di�erence in 
proportions required for a significant di�erence 
is calculated as follows:

To determine if this is a significant di�erence, 
we must determine if the di�erence between 
our samples is larger than the di�erence 
required. The observed di�erence is 8% (60% 

- 52%), which is not larger than the required 
di�erence, so the two groups are not
significantly di�erent.

± 1.96 × 0.6 × 0.4
300

0.52 × 0.48
250

± 1.96 × 0.24
300

0.2496
250

± 1.96 × 0.0008 + 0.0009984

+

+

± 1.96 × 0.0424075

± 0.083

± 8.3%

± 1.96 × 0.0017984

Difference Required for Sta�s�cal Significance
Two Sample Test

Confidence Level Confidence Level
n 90% 95% n 90% 95%

100 11.6% 13.9% 800 4.1% 0%
200 8.2% 9.8% 900 3.9% 0%
300 6.7% 8.0% 1000 3.7% 0%
400 5.8% 6.9% 1500 3.0% 0%
500 5.2% 6.2% 2000 2.6% 0%
600 4.7% 5.7% 2500 2.3% 0%
700 4.4% 5.2% 5000 1.6% 0%

When the two proportions (p) are similar
and the two sample sizes (n) are similar, the 
di�erence required for two proportions to be 
significantly di�erent is approximately 1.4 
times larger than the one sample test. The 
following table shows the di�erence required 
for a statistically significant di�erence between 
two sample segments when p = 0.5 and the 
sample sizes in the two cells are equal. The 
assumptions for the one-sample test also 
apply to the two-sample test. In addition, 
one other assumption must be stated.

Independent Samples

This test of di�erences is only appropriate 
when there are two groups and no respondent 
is in both groups. For example, if we have 
one group of all lottery players and one 
group of frequent lottery players, it is wrong 
to test if these two groups are significantly 
di�erent because the frequent players are a 
subset of all players. In e�ect, you would be 
testing if someone were di�erent from 
himself or herself.

Sample Size Determination

So far we have discussed using these formu-
lae only to analyze data. We can also use 
these formulae to help determine sample 
sizes. Assume that we want to determine a 
sample size in which a di�erence of 6 
percentage points between two groups 
would be significant at the 95% confidence 
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level. We can use the following formula 
(derived from the previous one) to determine 
the sample size per sample segment. 

These terms each have the same meaning as 
above. The new term, d, represents the 
di�erence (expressed as a decimal) that 
should be considered significant. Again, the 
pq term is frequently set to p = 0.5, q = 0.5, pq 
= 0.25, as a worst-case scenario. Therefore, we 
can calculate the required sample size
as shown below.

Therefore, with a sample size of 534 in each 
sample segment, a di�erence between 
segments of 6 percentage points would 
always be significant.6 Note that this 
represents a two-sample test. To determine a 
sample size for a one sample test, simply 
exclude the “2” from the numerator.

While this is a powerful tool, it is probably 
myopic to determine sample sizes for a 
research study on this criterion alone. Other 
considerations include analyses to be 
performed, number of segments likely
to be investigated, and type of 
information to be collected.

Sampling versus Non-Sampling Errors

Now, the remaining question is what do 
researchers mean when they say reliable? 
And what does it mean when someone says 
they would like their research to have a 
statistically reliable sample?

To answer this we actually leave the world of 
sampling statistics. Instead, we focus on 
issues of questionnaire writing. Questions are 
said to produce reliable results if on repeated 
administration they produce the same 
results; reliability has virtually nothing to 
do with sampling theory.

n = 2*t2*pq
a2

n = ;2*1.96*p*q
0.06*0.06

n = ;1.9208
0.0036

n = 534

An example of a very reliable question is 
gender. Questions that produce less reliable 
results include income (people lie), questions 
dealing with long term memory (people 
forget), and questions that are uninteresting 
or are asked in too much detail (people don’t 
care). Question order also has a major impact 
on the reliability of a question. That is why in 
tracking studies, even changing one question 
early in the survey can erode a researcher’s 
ability to make meaningful comparisons.

There is another point to consider when 
talking about reliability; reliability indicates 
that a respondent will give the same answer 
on repeated administration. It doesn’t 
indicate that he or she gives the correct 
answer—that measurement is referred to as 
validity.7 A valid measure must be reliable 
but a reliable measure isn’t necessarily valid.

So then, why do sampling discussions include 
reliability so often?

When respondents err answering a
question, they can do so either at random or 
systematically. If they do so systematically, 
there is a consistent directional bias. For 
example, some respondents tend to overstate 
their income. Such a response would represent 
a systematic bias, and huge sample sizes will 
not correct this bias. However, if respondents 
err at random when answering questions, 
with large sample sizes the random errors 
cancel each other out and our sample 
estimate of the proportion is unbiased, even 
though our variance is increased.

Unfortunately, there are no common formulae 
to account for this, and it is largely an academic 
issue. Therefore, o produce reliable research, 
the key areas of focus must include questionnaire 
design and administration in addition
to sample size. 

 6 There can be occasions in which after conducting this 
calculation to determine the sample size, it turns out that we 
would be talking to a large portion of the total universe of 
potential respondents. In these instances the finite population 
correction factors are employed.
7Some prefer to use the terms accuracy and precision, where 
precision represents consistency over repeated administrations 
and accuracy represents the di�erence between the actual value 
and the value determined by the research.


